A harmonic mean inequality for the q-gamma and q-digamma functions

نویسندگان

چکیده

We prove among others results that the harmonic mean of ?q(x) and ?q(1/x) is greater than or equal to 1 for arbitrary x > 0, q ? J where a subset [0,+?). Also, we there unique real number p0 (1, 9/2), such (0, p0), ?q(1) minimum q(1/x) 0 (p0,+?), maximum. Our generalize some known inequalities due Alzer Gautschi.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A harmonic mean inequality for the digamma function and related results

We present some inequalities and a concavity property of the digamma function ψ = Γ′/Γ, where Γ denotes Euler’s gamma function. In particular, we offer a new characterization of Euler’s constant γ = 0.57721.... We prove that −γ is the minimum of the harmonic mean of ψ(x) and ψ(1/x) for x > 0. Mathematics Subject Classification (2010). 33B15, 39B62, 41A44.

متن کامل

Some inequalities for the q-beta and the q-gamma functions via some q-integral inequalities

Some new inequalities for the q-gamma, the q-beta and the q-analogue of the Psi functions are established via some q-integral inequalities. In classical analysis, integral inequalities have been well-developed and leading to a wide variety of applications in mathematics and physics (see [11–13] and references therein). In a survey paper [4], Dragomir et al. used certain clever integral inequali...

متن کامل

THE MULTIPLE GAMMA FUNCTIONS AND THE MULTIPLE q-GAMMA FUNCTIONS

We give an asymptotic expansion (the higher Stirling formula) and an infinite product representation (the Weierstrass product representation) of the Vignéras multiple gamma functions by considering the classical limit of the multiple q-gamma functions.

متن کامل

COMPLETELY MONOTONIC FUNCTIONS INVOLVING THE GAMMA AND q-GAMMA FUNCTIONS

We give an infinite family of functions involving the gamma function whose logarithmic derivatives are completely monotonic. Each such function gives rise to an infinitely divisible probability distribution. Other similar results are also obtained for specific combinations of the gamma and q-gamma functions.

متن کامل

IMPROVEMENTS OF BOUNDS FOR THE q–GAMMA AND THE q–POLYGAMMA FUNCTIONS

In this paper, the complete monotonicity property of functions involving the q -gamma function is proven and used to establish sharp inequalities for the q -gamma and the q -polygamma functions for all q > 0 . These bounds for the q -gamma and the q -polygamma functions refine those given by Salem [17]. Mathematics subject classification (2010): 33D05, 26D07, 26A48.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Filomat

سال: 2021

ISSN: ['2406-0933', '0354-5180']

DOI: https://doi.org/10.2298/fil2112105b